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FUNCTIONS OF TRANSITION FOR CERTAIN
KAHLER MANIFOLDS

CARL VERHEY

1. Introduction

In [1] Adler has shown that Kihler metrics can be classified by geometric
conditions of the image of an isometry into certain Grassmannians. In this pa-
per, we find a necessary condition on the isometry which will guarantee that
the original metric was in fact a Hodge metric. (The cohomology class of the
fundamental form of the metric belongs to an integral cohomology class.)

Some standard conventions are observed. Differentiable will mean differen-
tiable of class C=. If ¢ is a mapping, ¢, will denote the induced map in tangent
spaces. Lower case letters will denote the Lie algebra, upper case letters the
Lie group. For example, o(n) will denote the Lie algebra of the orthogonal
group O(n). Finally, if g is an element of a matrix group, g’ will denote the
transpose of g.

The results of this paper are part of the author’s Ph. D. thesis, which was
written at Purdue University under A. W. Adler.

The following material can be found in [1]. We include it here for the sake
of completeness.

By a modification of Nash’s theorem on isometric imbeddings in Euclidean
space, it can be shown that every k-dimensional Riemannian manifold M can
be isometrically imbedded in $**#~! (the unit sphere in E**?) where p is a large
positive integer depending on K but not on M.

Let Biun, = 02n + p)/0(2n) X O(p — 1). Then B{,,, can be considered as
the set of all pairs (P,, P,), where P, is a 2n-plane in E(2n + p) through the
origin, and P, is a vector in E(2n + p) orthogonal to P,. Let F be an isometric
imbedding of a 2n-dimensional Riemannian manifold M into $*"*#-'. Each
point F(m) of F(M) defines an element of By,,, (i.e., a pair (P,, P,)) as follows:
P, is to be the tangent space of F(M) at F(m) translated to the origin in
E(2n + p), and P, is to be the position vector of F(m) The mapping
n: F(M) — B, defined by z(m) = (P, P,) is called the spherical image map-
ping; on composition with F, it determines a map f of M into Bj,,,.

Let B’ be the bundle of orthonormal bases over M. Then B’ is the space of all
(2n+41)-tuples (m, e, - - -, €,,), Where m is a point in M, and e,, - - -, &,, is an
orthonormal basis for M,,. Define a mapping
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g:B -V ,=02n+p)/0p—1)
by
gm: e, ---,e,) = [F(m), Fi(e), - - -, Fi(e;)] ,

where F(e;) denotes the vector derived from F,(e;) by parallel translation to
the origin in E***?. The following diagram is the commutative

B——Vy,
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f +
M BO(Z’IZ)
S
F
SZ‘Iz+ -1

where 1, 7, and « are the natural mappings.

Let M be a hermitian manifold. Then the bundle B’ of orthonormal bases of
M is reducible to a principal U(n)-bundle B over M, and the condition that M
be Kihler is equivalent to the existence of a torsionless connection on B. Let
B}y = 02n + p)/U(n) x O(p — 1). Then there is a mapping f of M into
B}, such that the following diagram commutes:

0@2n + p)
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where 7, 7%, @ are the natural mappings.

Let x be a tangent vector to 0(2n + p), and denote by X the element of
0(2n + p) defined by x. Define w(x) to be the projection of X into o(2n). Since
the 1-form w is horizontal over V3, , and right invariant under the action of
O(p — 1) there is a o(2n)-valued 1-form w' on V3, , such that ¢*(w') = w. A
vector x on B}, is said to be H-horizontal if there is a vector y on V3, , with
x = t*(y) and w'(y) = 0.
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The importance of the notion of H-horizontality is seen in the following
theorem:

Theorem 1. A4 2n-dimensional Riemannian manifold M is a Kéihler mani-
fold if and only if it admits a mapping g into B} ,, such that:

(a) g(M) is H-horizontal,

(b) the projection of g(M) into B, is the spherical image of the projection
of g(M) into §*"+r1,

A 2n-dimensional submanifold M of B}, is said to be a K-manifold if it
satisfies the following two conditions:

(a) M is H-horizontal, that is, every tangent vector of M is H-horizontal.

(b) The projection of M into B;,,, is the image under the spherical map
of the projection of M into §**+7-1,

By Theorem 1, every K-manifold can be identified with a Kéhler manifold.
In fact, it can be shown that every K-manifold M induces a partial Hermitian
metric 4 in Bj ,,. Let © denote the fundamental form of A, and Q be the re-
striction of © to M. Then  is the fundamental form of the natural Kihler
metric and complex structure on M, and we have

-Theorem 2. Let M be a 2n-dimensional manifold with Riemannian metric r.

1. r is the real part of a Kihler metric of an almost complex structure on
M if and only if M admits a differentiable isometric imbedding f onto a K-
manifold..In case such an f exists, it is in fact a homeomorphic isometry with
respect to the natural Kihler metric and complex structure of f(M).

2. If r is the real part of a Kiihler metric of a complex analytic structure on
M, then I*(Q) is the fundamental form of the metric.

Let x be a tangent vector of 0(2n + p), and denote by X the element of
o(2n + p) defined by x. Define 1-forms w, and w’ as follows:

wy(x) is to be the projection of X into u(n), the Lie algebra of U(n), and
w’(x) is to be the projection of X into o(2n + p — 1). Identify o(2n + p) with
the space of (2n + p) X (2n + p) skew symmetric real matrices, and denote by
w;,, ; the 1-form which assigns to each matrix its (i, Hth entry, 1 < i,j< 2n + p.
Let

trace Im X = 3 Wy e0W(X)) = 3 Wenu(X) .

Note that trace Im is invariant under the action of U(n) X O(p — 1). Finally
let £’ denote the curvature form of w'.

Let M be a compact complex analytic manifold with a K#hler metric 4, and
f be a differential isometric imbedding of M into a k-manifold. Then the 2-forms
trace Im dw,, trace Im w” A w’, and trace Im £’ are horizontal over f(M). Since
they are also invariant under the right action of U(n) x O(p — 1), they induce
2-forms on f(M). Denote these 2-forms by Trace Im dw,, Trace Im w’ A w’,
and Trace Im £’, respectively.
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Proposition 1. (a) (1/2x)f*(Trace Im dw,) is the first Chern form of the
Kdhler metric on M.

(b) (1/2m)f*(Trace Im £2') is the fundamental form of the Kihler metric on
M.

(¢) TracelIm £’ = Trace Imdw, + TraceImw’ A w'.

The fact that w = w, on f7'[f(M)] implies that Trace Im w' N\ w' =

7 2r+p-1
> Zp} Wi N\ Wi,p.. We will denote this form by £+ .

i=1 a=2+1

2. A condition

A K-manifold M’ contained in By, ,, will be said to be special if each m’ of
M’ has a neighborhood V(m’) which admits a cross-section ¢, into 6~(V) such
that d(¢,*w') = 0, where w' denotes the o(2n + p — 1) valued 1-form w’ — w.

A complex analytic manifold M together with a Kihler metric K( ,) on M
will be said to be a special Kihler manifold if it admits an isometric imbedding
F into §***?-! (for some p) such that f(M) is a special K-manifold. Let D de-
note covariant differentiation with respect to the connection w’ on 0(2n + p) as
a bundle over §**+#-1,

Proposition 2. Let (M, K(,)) be a special Kihler manifold, F be as pre-
scribed, and me M. Then there is an orthonormal basis e, - - -, ey, ,_, Of
vector fields tangent to S***?~' and defined on some neighborhood F(U(m)) of
F(m) such that:

(@) e, - -,e,, is a basis for the tangent space of F(U),

(b) e:ui1s -y €umypoy is a basis for the orthonormal complement to the
tangent space of F(U),
© awx*=0fori=1,.--,2nta=2n+1,---,2n4 p — 1 where

wis(x) = (D,e;, e,.

The converse is also true.

Proof. Given a cross-section ¢, on a neighborhood f(U) of a point f(m),
one gets an orthonormal basis for vector fields tangent to $***#~! and defined
in a neighborhood F(U) of F(m) satisfying (a) and (b). Conversely,
such an orthonormal basis e, - - -, e,,,,_; gives a cross-section ¢,(f(m)) =
{F(m), e, - - -, e, ,_,} defined on the neighborhood f(U) of f(m). So it suffices
to show that d(¢,*(w1)) =0 if and only if dw;;*=0foralli=1,..-,2n; «
=2n+1,--.2n 4+ p — 1. But this is immediate since, in fact, w%° =
B*a,*((wh);,), this last statement being the equivalence of the Cartan and
bundle definitions of a connection. ’

3. The isomorphism between de Rahm and Cech cohomology for
special K-manifolds

Let M be a special K-manifold contained in B,,,, m a point of M, and
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U(m) a neighborhood of m in M admitting ‘a cross-section o, into 0(2xn + p)
such that ¢ ,,,w' is closed. Then % = {U(m); m e M} is an open covering of
M. Let ¥~ = {V, ;s ¢ S} be a locally finite (differentiably) simple refinement of
the covering #, [3]. Since ¥ is a refinement of %, each V, is contained in some
member of the covering /. Hence, for each s in S, there is a cross-section g,
defined on V, such that d(g,*w') = 0. Since each V, is simply connected, there

are functions 4$,,i=1,.-.,2n;e=2nrn+1,...,2n + p — 1, such that
dhi, = e, *w,, on V,. Let h* be the skew symmetric (2n + p) X (2n + p) matrix
whose (i, a)thcntrylshs fori=1,.--,2n;a=2n+1,---,2n+ p— land

whose remaining entries above the d1agona1 are zero. Let h° be the skew sym-
metric matrix defined on (V) by A* = A° o §, where § is the natural projec-
tion of 0(2n + p) onto B} ,,.

Lemma 1. On ¢, (V,), dht = wt.

Proof. ¢**dh® = a(d(h® o §) = 0,*(6%dh®) = (J o a)*(dh*) = oW,

Let R, denote right translation along the fiber for -(V,) by an element g of
U(n) x 0(p — 1). Then §o R, = §, for all g in U(n) X O(p — 1). For each b
in 671V ) define g,(b) to be the element of U(n) x O(p — 1) such that R,_.,(b)
= g, 0 6(b), that is, g,(b) is to be the element of U(n) x O(p — 1)-such that right
translation by g,(b) carries b to the point of the cross-section ¢(V,) lying in the
same fiber as b.

Lemma 2. Let b be any point of 3~ (V). Then

wpt = gHBYR ) *(dR*(3, o 3(b)))g(D) .

Proof. Since besY(V,), b can be written as (m,f,, - - *» fansp_1), Where
m=qacdodb),f, --,fm is an orthonormal basis for the vector fields tangent
to « « (M) on some neighborhood of the point m, and f,,,1, « * +, fansp-y IS a0

orthonormal basis for the orthogonal complement to the tangent space of M on
this neighborhood. Here, as before, « o @ denotes the natural projection of B, ,,
onto §*?7, Lete,, - - -, €,,,,_; be the orthonormal vector fields defined by the
section ¢,. Then by definition of g,(b), we have

(F01)5 -+« Fanspa(m)) = (€™, -+ -, ™, g, (b) ,

where m = @ 09 o 8(b). Let x be any tangent vector of a‘l(Vs) at the point b
and x = (@0 3o d),x. Then

(Wi, (), = <fs» D_azfa> = <€j 8ri€r: Da Z; 854 >

2n 2n+p— 2 +p~

= 1:21 _Z; lgkz<ek’D (gpaep> = L Z gkz<ek7 x(gﬁa)eﬁ + 8D, ep>
2n 2n+p-— 2n 2n+p-1

=3 gkz<ek’D e,s>g,9a 20 2 gki[Wk,s(R:fs(b>(x)]asa(_zz>gpa .

k=1 8=2n k=1 j=2n+1
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where 1 < k< 2n,2n—1< B<2n+ p— 1. Since by Lemma 1, ¢,*dh*
= g,*w?, the assertion now follows. \

Define an operator T on pairs 4,, 4, of 2n + p) X (2n + p) matrices by
T(A,, A;) = trace Im [A4,, A,] where [A4,, A,] denotes the matrix 4,4, — 4,A4,.
Finally, define a 1-form «, on 6~ %(V,) by

a(X), = Tlg, (bYr*(b)g,(b), w,(X)]

for any tangent vector X of (V) at the point b. Recall that 2 denotes the
2-form Y =t2ol 7w, A Wy, = trace Im wt A wi.

Proposition 3. On ¢7'(V ), da,/2 = 0+

Proof. Let b be any point of (V). Then

w,l = gst(b)(R;ks(b)(dhsawb)))gs(b) .

Since trace Im is right invariant under the action of U(n) X O(p — 1), we
have

o, = T(g'h’g,, wt) = trace Im (g hgwl — wiglh'g)
= trace Im (g,’h'g,8. (R}, dh)g, — 8, (R} dh")g.8,"h°g,)
= trace Im (h*(D)REA, 5, — REARS, ;0 h%)

which becomes, in consequence of #°(a,5(b)) = h*(b),
«, = trace Im (h*(b)dh,* — dh,*hé(b)) .
Thus

da; = trace Im (dh,* A dhy,® + dhy*dhy®)
= 2 trace Im (R}, ,,(dh*, 500 N\ dR°, 55,)
= 2R¥% ,, trace Im (Wi, A\ Wi,,) = 22,1,

since the 2-form 2,! is invariant under the right action of U(n) X O0(p — 1).
Now let r and s be elements of the index set S such that V. N V, is not empty.
Foreachmin V, N V,, let g,.(m) be the element of U(n) x 0(p — 1) such that

G'S(m) = Rg,-s(m)(o'r(m)) .

If b is any point in §-%(V, N V), then g(b)g,'(b) = g,,(3(b)).
Lemma 3. On V, N V,, the 1-form

T(h*g,,, h"dg,) + T(h'dg,,, h'g.})

is closed.
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Proof. By an application of Lemma 3 we have dh” = g,!dh‘g,,. Thus
dg,ldh’g,, = g,idh*dg,,, and
d(T(h*g,,, h'dg}) + T(h'dg,, h"g/,))
= d trace Im (h’g, h"dg}, — h'dg/h’g,,)
+ dtrace Im (—h"g/h'dg,, + h'dg, h'g})
= trace Im (d(h’g, "dg), + h'dg,h'g/)
— trace Im (d(k7dg/h'g,, + h'g/hdg,,)) .

The first term above is equal to

trace Im (dh*g, h"dg/, + h'g, dh"dg}, + dh'dg, Jg/, — h'dg,dh'g/)
= trace Im ((—dg/dh’g,, + g/dh'dg,)(h")
-+ trace Im (h*(g, dh"dg}, — dg.dh7gl)) = 0.

Similarly,
' trace Im (d(kdg g, + hgihidg,)) = O .
Since V, N V, is simply connected, there exists a function £} such that
df}, = T'g,, rdg}) + T(k'dg,,, h'g})

on V, N V. Define a function f2 on V, N V, by f% = T(h'g,,, h"g}) and let
a, (resp. a,) be the 1-form ¢, *(a,)(resp. o, *(a)).
Propositond4. OnV, NV, a, — a, = d(f2 — fL).
Proof. o, — o, = T(h*, dh*) — T(h", dh")
= T, g, dh'g}) — T(W, g/,dh’g.,)
= T(bs’ g”dhrgrts) + T(gr‘sd}_lsg”, hr) .

Since T = trace Im ([, ]), and trace Im is invariant under the right action of
Un) X O(p — 1), we have: :

a; — a, = T(h'g,,, dh"g}) + T(dh'g,., g}
= d(T(h'g,,, 'g})) — T(h'g,,, hrdgt) — T(h'dg,,, h'gt)
=d{f’ — 17 -

Now et r, 5, and ¢ be any elements of the index set S such that V. NV ,NV,
is not empty, and let

Arge = (frzs - rzz + fszt) - (frls - rlz + fslt) N
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Let {a} denote the cohomology class of H*M, R) of which [(1/4m)a,.] is a
representative, and {trace Im w' A w'} the cohomology class of the 2-forth
trace Im wi A wi in HY(M).

Theorem 3. Let M be a special K-manifold, and [a] as defined above. If
¢ denotes the isomorphism of H (M) onto HXV, R), then

d({trace Im wt A wi}) = {a} .

Proof. The assertion follows immediately from Propositions 3 and 4.

4. A sufficient condition for a special Kihler manifold
to be a Hodge manifold

Theorem 4. Let (M, K(,)) be a special Kidhler manifold. Suppose more-
over that the matrices h* can be chosen so that dg, W' gt -+ g,h7dg/, vanishes
whenever r and s are elements of the index set S such that V., NV, is not
empty. Then K( ,) is a Hodge metric. _

The remainder of this section is devoted to the proof of this theorem.

Lemma 1. Under the conditions of Theorem 4 the functions f. can be
chosen to be identically zero.

Proof. By definition,

df},. = T(h'g,,, hdgl) + T(hdg,;, h'g;,)
= Tk, g,sh7dg/, + dg.h'g)) =0
onV, N V, Thus f% is a constant and, in fact, can be ‘chosen to be zero.
Define constant matrices ¢, by ¢,, = h* — g,7g}, for all r, s in the index
set S such that V, N V, is not empty. '

Lemma 2. If r, s, t are elements of the index set S such that V.NV NV,
is not empty, then

Cre + gnCs,.thz — Cg = 0 .
Proof. We have
h = gsrhsgstr + Csr 5

ht == gsthsgstt + cst >
htA: grth’rgrtt + drt >

Cre + grtcsrgrtt — Cgq = gsthsgstt _' g’rthrgrzz + grtcrsgrzt ;
- gn(gsrhsgrts - hr)grtt + grtcsrglrzt
= —&C:)8 + 8r:Cu85 = 0.
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Now fix any element s of the index set S and for each 7 in § such that V, OV,
is not empty, define A" = h” — c,,.
Lemma 3. Under the same hypothesis as in Lemma 2,

grtﬁrgrt = ﬁt .

Proof. 8. gl = g (W — ¢.,)8), = 8, M8}, — 8-Cen8l,
= grth'rgrtt + Cpy — Cyp = ht — Cog = ht .

Let S denote all elements r of the index set S such that V, N V, is not empty.
If u is an element of S such that ¥, N V, is not empty for some r in §, define
h* = h* — ¢,,, where ¢,, is defined by ¢,, = h* — g,,h"g ..

Lemma 4. A% s well defined.

Proof. We must show that if r and ¢ are elements of S such that ¥, N V,
and V, N V, are not empty, then A* — é,, = h* — &,,, that is, ¢&,, = &,,. But,
as before, ¢,, + 8,,6:,,8,% — €., = 0, and, by Lemma 3, &,, = 0. Hence the
lemma follows.

Continuing this process defines matrices 4" for each r in the index set S in
the same connected component as ¥, such that g..hgt, = ht for all r and ¢ with
V, N V, not empty. Doing this for every connected component gives matrices
hr for each r in S such that g,,A"g!, = At for all r and ¢ such that ¥, N V, is
not empty.

Lemma 5. The cohomology class [a] vanishes.

Proof. Since dh* = dh* for all s, and trace Im is invariant under the right
action of U(n) x O(p — 1), a representative of [a] is

yy = T(hg,,, hTgt) — T(hig,,, rg,) + T(h'g,, h'gl)
= T(g.h'g,s, B") — T(g}hig,,, ") + T(gih'gy, 1) .

Since T(h", A7) = trace Im ([A7, A7) = O for all r in S, we have

a, = T(gLhg,, — b, ") — T(gih'g, — b7, h") + T(gih'g, — h*, )
=0

by the definition of ~. Thus the cohomology class [a] vanishes.

Lemma 6. If {a} vanishes, then K(,) is a Hodge metric.

Proof. By Proposition 1, (1/2z)02+ = £ — ¢,, where ¢, is the first Chern
form of M, and @ is the fundamental form of the metric K(, ). By Theorem 3,
(£2+) = {a}. Thus {a} vanishes, so that the first Chern form and the funda-
mental form of the metric are cohomologous. Since the first Chern form is
integral, the assertion follows.
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